skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pollatsek, E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Stable isotope (δ18O, δD, δ11B) ratios of fault surface and shear zone minerals sampled from Marie Byrd Land in the West Antarctic rift system (WARS) provide opportunity to monitor potential fluid transport across multiple levels of the crust during active rifting. In the upper crust, high-angle brittle faults in the southern Ford Ranges display tourmaline-mineralized surfaces at Mt. Douglass, Mt. Dolber, and Lewissohn Nunatak. Tourmaline are strongly aligned with fault striae indicating mineralization during normal-oblique and strike-oblique displacement, with dilatancy allowing fluid infiltration of fault surfaces. Tourmaline’s refractory nature preserves isotopic compositions, which serve as a proxy for fluid sources and water-rock ratios. We compare tourmaline isotopic ratios with those of muscovite and quartz that occupy progressively deeper, kinematically linked fault-shear networks, and high-grade sillimanite-garnet-quartz±biotite associations, with the objective of characterizing potential fluid sources, relative depths of fluid interactions, and eventual estimation of volume of migrated fluids. Tourmaline δ18O values range from 9.1 and 10.4 ± 0.2 ‰ VSMOW (avg.= 9.8 ‰; st.dev. = 0.6), with intrasample reproducibility from 0.9 ‰ to 1.2‰, either as the result of variation in fluid sources or minor fluctuations in temperature during tourmaline formation. Quartz δ18O ratios range from 11.1 to 10.3 ± 0.2 ‰ (avg. =11.0‰; st.dev. = 0.64), with paired ∆Qtz-Tur values lower than quartz calculated to be in equilibrium with tourmaline at 450°C. Calculated qtz-tur temperatures exceed values reasonable for brittle crust (>700°C), indicating tourmaline grew rapidly or quartz has undergone subsolidus reequilibration. Fluids calculated to be in equilibrium with tourmaline at 450°C range from 8.2 to 9.5‰. Tourmaline 40Ar/39Ar geochronology in progress yields Early Cretaceous dates, indicating mineralization coincided with rifting onset. Very rapid development of the WARS and high thermal gradients during ENE- WSW transtension promoted upward movement of fluids in equilibrium with magmatic bodies or dehydrating metamorphic or sedimentary protolith. Tourmaline of Mt. Douglass and Mt. Dolber yield δD values of –60 and –64‰; these values confirm the role of fluids derived from mid crustal sources transported to the upper crust through fault-shear network. 
    more » « less
  2. Brittle faults are widespread but rarely exposed in Marie Byrd Land, a part of the West Antarctic rift system, owing to enhanced erosion of zones of cataclasis by the regional ice sheet. Tourmaline-mineralized faults discovered at three locations in the Ford Ranges constitute a new record of fluid-rock interactions in this region of extended crust. Tourmaline resists re-equilibration, even during metamorphism, thus strongly aligned tourmaline from high-angle faults at Mt. Douglass, Mt. Dolber, and Lewissohn Nunatak likely contain direct records of fault-hosted fluids and timing of fault movements. The faults form an array oriented NNW-SSE and WNW-ESE, which displays brittle kinematic criteria indicating normal-oblique and strike-oblique displacement. Mirrored fault surfaces suggest formation during seismic slip. Tourmaline is concentrated within a 2 to 4 mm zone bordering the fault planes. Petrography and EMPA analyses show unzoned tourmaline , with the dravite variety at Lewissohn Nunatak and schorl at the other two sites. Fluid inclusions in dravite are tubular (A-axis-parallel), 10 to 15 um, and up to 25 um, in length, containing gas and fluid phases. Fluid inclusions in schorl are C-axis-parallel and breached. Tourmaline ∂18O ratios (n=4) range from 9.2 to 10.4 ± 0.1 ‰ VSMOW (average 9.7‰, s.dev. = 0.7). Paired quartz yield ∂18O values of 11.1 to 10.3 ± 0.1 ‰, and ∆Qtz-Trm values between 1.3 and 2.0. Brittle microfractures in parallel arrays, evident in thin section, indicate tensile opening along ENE- WSW axes, in accordance with outcrop evidence. The strong preferred orientation and uniform mineral composition of tourmaline indicate syntectonic growth of tourmaline along fault planes. ∆Qtz-Trm values suggest equilibration between host-rock quartz and tourmaline was not achieved, likely due to rapid tourmaline precipitation. Relative isotopic homogeneity between sites suggests similar fluid conditions across the region, for crust underlying a minimum area of 2000 km2. Preliminary results of tourmaline 40Ar/39Ar dating indicate broadly Cretaceous timing for fault-related fluid flow. Ongoing work seeks to determine the temperature of mineralizing fluids and evaluate whether the brittle array localizes geothermal heat beneath the contemporary icesheet. 
    more » « less